Lecture 04 12.4/12.5 The cross product and lines in space

Jeremiah Southwick

January 23, 2019

Office Hours

MW 2:40-3:40 T 9:30-10:30 R 12:30-1:30 F 8:30-9:30

Last Class

Definition

The cross product of \vec{u} and \vec{v} , denoted $\vec{u} \times \vec{v}$, is the vector

|▲□▶ ▲圖▶ ▲画▶ ▲画▶ | 画|||のへの

Standard Unit Vector Cross Products

In practice, there's an easier way to calculate the cross product. Let's investigate the cross products of the standard unit vectors.

Standard Unit Vector Cross Products

In practice, there's an easier way to calculate the cross product. Let's investigate the cross products of the standard unit vectors.

$$\vec{i} \times \vec{j} = \vec{k} \qquad \qquad \vec{j} \times \vec{i} = -\vec{k} \\ \vec{j} \times \vec{k} = \vec{i} \qquad \qquad \vec{k} \times \vec{j} = -\vec{i} \\ \vec{k} \times \vec{i} = \vec{j} \qquad \qquad \vec{i} \times \vec{k} = -\vec{j}$$

Standard Unit Vector Cross Products

In practice, there's an easier way to calculate the cross product. Let's investigate the cross products of the standard unit vectors.

$$\vec{i} \times \vec{j} = \vec{k} \qquad \qquad \vec{j} \times \vec{i} = -\vec{k} \\ \vec{j} \times \vec{k} = \vec{i} \qquad \qquad \vec{k} \times \vec{j} = -\vec{i} \\ \vec{k} \times \vec{i} = \vec{j} \qquad \qquad \vec{i} \times \vec{k} = -\vec{j}$$

We also have the property that $\vec{\mathbf{u}} \times (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \vec{\mathbf{w}}$, i.e., that the cross product distributes across vector addition. (This is not obvious!)

$$\vec{i} \times \vec{j} = \vec{k} \qquad \qquad \vec{j} \times \vec{i} = -\vec{k} \\ \vec{j} \times \vec{k} = \vec{i} \qquad \qquad \vec{k} \times \vec{j} = -\vec{i} \\ \vec{k} \times \vec{i} = \vec{j} \qquad \qquad \vec{i} \times \vec{k} = -\vec{j}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\vec{\mathbf{u}} \times (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \vec{\mathbf{w}}$

$$\vec{i} \times \vec{j} = \vec{k} \qquad \qquad \vec{j} \times \vec{i} = -\vec{k} \\ \vec{j} \times \vec{k} = \vec{i} \qquad \qquad \vec{k} \times \vec{j} = -\vec{i} \\ \vec{k} \times \vec{i} = \vec{j} \qquad \qquad \vec{i} \times \vec{k} = -\vec{j}$$

 $\vec{\mathbf{u}} \times (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \vec{\mathbf{w}}$ Let $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$ and $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$. Then we have $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = (u_1 \vec{\mathbf{i}} + u_2 \vec{\mathbf{j}} + u_3 \vec{\mathbf{k}}) \times (v_1 \vec{\mathbf{i}} + v_2 \vec{\mathbf{j}} + v_3 \vec{\mathbf{k}})$

$$\vec{i} \times \vec{j} = \vec{k} \qquad \qquad \vec{j} \times \vec{i} = -\vec{k} \\ \vec{j} \times \vec{k} = \vec{i} \qquad \qquad \vec{k} \times \vec{j} = -\vec{i} \\ \vec{k} \times \vec{i} = \vec{j} \qquad \qquad \vec{i} \times \vec{k} = -\vec{j}$$

 $\vec{\mathbf{u}} \times (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \vec{\mathbf{w}}$ Let $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$ and $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$. Then we have $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = (u_1 \vec{\mathbf{i}} + u_2 \vec{\mathbf{j}} + u_3 \vec{\mathbf{k}}) \times (v_1 \vec{\mathbf{i}} + v_2 \vec{\mathbf{j}} + v_3 \vec{\mathbf{k}})$ $= u_1 v_1 (\vec{\mathbf{i}} \times \vec{\mathbf{i}}) + u_1 v_2 (\vec{\mathbf{i}} \times \vec{\mathbf{j}}) + u_1 v_3 (\vec{\mathbf{i}} \times \vec{\mathbf{k}})$ $+ u_2 v_1 (\vec{\mathbf{j}} \times \vec{\mathbf{i}}) + u_2 v_2 (\vec{\mathbf{j}} \times \vec{\mathbf{j}}) + u_2 v_3 (\vec{\mathbf{j}} \times \vec{\mathbf{k}})$

$$+u_3v_1(\vec{\mathbf{k}}\times\vec{\mathbf{j}})+u_3v_2(\vec{\mathbf{k}}\times\vec{\mathbf{j}})+u_3v_3(\vec{\mathbf{k}}\times\vec{\mathbf{k}})$$

$$\vec{i} \times \vec{j} = \vec{k} \qquad \qquad \vec{j} \times \vec{i} = -\vec{k} \\ \vec{j} \times \vec{k} = \vec{i} \qquad \qquad \vec{k} \times \vec{j} = -\vec{i} \\ \vec{k} \times \vec{i} = \vec{j} \qquad \qquad \vec{i} \times \vec{k} = -\vec{j}$$

 $\vec{\mathbf{u}} \times (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \vec{\mathbf{w}}$ Let $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$ and $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$. Then we have $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = (u_1 \vec{\mathbf{i}} + u_2 \vec{\mathbf{j}} + u_3 \vec{\mathbf{k}}) \times (v_1 \vec{\mathbf{i}} + v_2 \vec{\mathbf{j}} + v_3 \vec{\mathbf{k}})$ $= 0 + u_1 v_2 (\vec{\mathbf{i}} \times \vec{\mathbf{j}}) + u_1 v_3 (\vec{\mathbf{i}} \times \vec{\mathbf{k}})$

$$= 0 + u_1 v_2 (\mathbf{i} \times \mathbf{j}) + u_1 v_3 (\mathbf{i} \times \mathbf{k}) + u_2 v_1 (\mathbf{j} \times \mathbf{i}) + 0 + u_2 v_3 (\mathbf{j} \times \mathbf{k}) + u_3 v_1 (\mathbf{k} \times \mathbf{i}) + u_3 v_2 (\mathbf{k} \times \mathbf{j}) + 0$$

$$\vec{i} \times \vec{j} = \vec{k} \qquad \qquad \vec{j} \times \vec{i} = -\vec{k} \\ \vec{j} \times \vec{k} = \vec{i} \qquad \qquad \vec{k} \times \vec{j} = -\vec{i} \\ \vec{k} \times \vec{i} = \vec{j} \qquad \qquad \vec{i} \times \vec{k} = -\vec{j}$$

 $\vec{\mathbf{u}} \times (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \vec{\mathbf{w}}$ Let $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$ and $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$. Then we have $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = (u_1 \vec{\mathbf{i}} + u_2 \vec{\mathbf{j}} + u_3 \vec{\mathbf{k}}) \times (v_1 \vec{\mathbf{i}} + v_2 \vec{\mathbf{j}} + v_3 \vec{\mathbf{k}})$

$$= 0 + u_1 v_2(\mathbf{k}) + u_1 v_3(-\mathbf{j}) + u_2 v_1(-\mathbf{k}) + 0 + u_2 v_3(\mathbf{i}) + u_3 v_1(\mathbf{j}) + u_3 v_2(-\mathbf{i}) + 0$$

$$\vec{i} \times \vec{j} = \vec{k} \qquad \qquad \vec{j} \times \vec{i} = -\vec{k} \\ \vec{j} \times \vec{k} = \vec{i} \qquad \qquad \vec{k} \times \vec{j} = -\vec{i} \\ \vec{k} \times \vec{i} = \vec{j} \qquad \qquad \vec{i} \times \vec{k} = -\vec{j}$$

 $\vec{\mathbf{u}} \times (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \vec{\mathbf{w}}$ Let $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$ and $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$. Then we have $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = (u_1 \vec{\mathbf{i}} + u_2 \vec{\mathbf{j}} + u_3 \vec{\mathbf{k}}) \times (v_1 \vec{\mathbf{i}} + v_2 \vec{\mathbf{j}} + v_3 \vec{\mathbf{k}})$

$$= (u_2v_3 - u_3v_2)\vec{\mathbf{i}} - (u_1v_3 - u_3v_1)\vec{\mathbf{j}} + (u_1v_2 - u_2v_1)\vec{\mathbf{k}}$$

$$\vec{i} \times \vec{j} = \vec{k} \qquad \qquad \vec{j} \times \vec{i} = -\vec{k} \\ \vec{j} \times \vec{k} = \vec{i} \qquad \qquad \vec{k} \times \vec{j} = -\vec{i} \\ \vec{k} \times \vec{i} = \vec{j} \qquad \qquad \vec{i} \times \vec{k} = -\vec{j}$$

$$\vec{\mathbf{u}} \times (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \times \vec{\mathbf{v}} + \vec{\mathbf{u}} \times \vec{\mathbf{w}}$$

Let $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$ and $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$. Then we have
 $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = (u_1 \vec{\mathbf{i}} + u_2 \vec{\mathbf{j}} + u_3 \vec{\mathbf{k}}) \times (v_1 \vec{\mathbf{i}} + v_2 \vec{\mathbf{j}} + v_3 \vec{\mathbf{k}})$

$$= (u_2v_3 - u_3v_2)\vec{\mathbf{i}} - (u_1v_3 - u_3v_1)\vec{\mathbf{j}} + (u_1v_2 - u_2v_1)\vec{\mathbf{k}}$$

The components of $\vec{u} \times \vec{v}$ can be recognized as determinants.

2x2 Determinants

Given a 2x2 matrix, we can calculate its determinant as follows:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

2x2 Determinants

Given a 2x2 matrix, we can calculate its determinant as follows:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

(ロ)、(型)、(E)、(E)、 E) の(の)

2x2 Determinants

Given a 2x2 matrix, we can calculate its determinant as follows:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Example
$$\begin{vmatrix} 4 & 2 \\ -3 & 8 \end{vmatrix} = 32 + 6 = 38.$$

3x3 Determinants

Given a 3x3 matrix, we can calculate its determinant as follows (beware of the minus before a_2):

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = a_1 \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} - a_2 \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} + a_3 \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}.$$

3x3 Determinants

Given a 3x3 matrix, we can calculate its determinant as follows (beware of the minus before a_2):

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = a_1 \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} - a_2 \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} + a_3 \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}.$$

Example
$$\begin{vmatrix} 2 & 2 & 1 \\ 1 & -2 & 4 \\ 0 & 2 & -1 \end{vmatrix} =$$

3x3 Determinants

Given a 3x3 matrix, we can calculate its determinant as follows (beware of the minus before a_2):

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = a_1 \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} - a_2 \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} + a_3 \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix}.$$

Example

$$\begin{vmatrix} 2 & 2 & 1 \\ 1 & -2 & 4 \\ 0 & 2 & -1 \end{vmatrix} = 2 \begin{vmatrix} -2 & 4 \\ 2 & -1 \end{vmatrix} - 2 \begin{vmatrix} 1 & 4 \\ 0 & -1 \end{vmatrix} + 1 \begin{vmatrix} 1 & -2 \\ 0 & 2 \end{vmatrix}$$

 $= -12 + 2 + 2 = -8.$

Back to the cross product

In the language of determinants, we can write

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Back to the cross product

In the language of determinants, we can write

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example Let $\vec{u} = \langle 2, 1, 1 \rangle$ and $\vec{v} = \langle -4, 3, 1 \rangle$. Then we have

 $\vec{\mathbf{u}} \times \vec{\mathbf{v}} =$

Back to the cross product

In the language of determinants, we can write

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

Example Let $\vec{u} = \langle 2, 1, 1 \rangle$ and $\vec{v} = \langle -4, 3, 1 \rangle$. Then we have

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ 2 & 1 & 1 \\ -4 & 3 & 1 \end{vmatrix} = \vec{\mathbf{i}} \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} - \vec{\mathbf{j}} \begin{vmatrix} 2 & 1 \\ -4 & 1 \end{vmatrix} + \vec{\mathbf{k}} \begin{vmatrix} 2 & 1 \\ -4 & 3 \end{vmatrix}$$
$$= \vec{\mathbf{i}}(1-3) - \vec{\mathbf{j}}(2+4) + \vec{\mathbf{k}}(6+4) = -2\vec{\mathbf{i}} - 6\vec{\mathbf{j}} + 10\vec{\mathbf{k}}$$

The following formulas are all equally valid ways to find the cross product of two vectors.

 $\vec{\mathbf{u}} \times \vec{\mathbf{v}} = (\|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\| \sin(\theta))\vec{\mathbf{n}} = (u_2v_3 - u_3v_2)\vec{\mathbf{i}} - (u_1v_3 - u_3v_1)\vec{\mathbf{j}} + (u_1v_2 - u_2v_1)\vec{\mathbf{k}}$ $= \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}.$

Properties of the cross product

The cross product satisfies several useful properties, which are given in the textbook at page 726.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$(r\vec{u}) \times (s\vec{v}) = (rs)(\vec{u} \times \vec{v})$$

2. $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
3. $\vec{v} \times \vec{u} = -(\vec{u} \times \vec{v})$
4. $(\vec{v} + \vec{w}) \times \vec{u} = \vec{v} \times \vec{u} + \vec{w} \times \vec{u}$
5. $\vec{0} \times \vec{u} = 0$
6. $\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w}$

12.5 Lines (and planes) in space

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

12.5 Lines (and planes) in space

In the plane (2D), we needed a point and a slope to define a line. In space (3D), we need a point and a direction vector.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

12.5 Lines (and planes) in space

In the plane (2D), we needed a point and a slope to define a line. In space (3D), we need a point and a direction vector.

(日)、

The point (x, y, z) is on the line *L* if and only if (x, y, z) is in the direction of \vec{v} from P_0 .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

This means we can get from P_0 to P via some scalar multiple of \vec{v} .

イロト 不得 トイヨト イヨト

э.

Thus, to write *P* as a vector (from the origin), we would first go to P_0 and then follow $t\vec{v}$ to *P*.

So as vectors,

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle v_1, v_2, v_3 \rangle.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle v_1, v_2, v_3 \rangle.$$

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle v_1, v_2, v_3 \rangle.$$

What we've done is *parametrized* the line.

$$\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle v_1, v_2, v_3 \rangle.$$

What we've done is *parametrized* the line.

Definition

Let $\vec{\mathbf{r}}_0 = \langle x_0, y_0, z_0 \rangle$ and $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$ be vectors. Then the vector equation of a line through $P_0 = (x_0, y_0, z_0)$ in the direction of $\vec{\mathbf{v}}$ is

$$\vec{\mathbf{r}}(t) = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}}, \quad -\infty < t < \infty.$$

There are many equivalent ways to write the equation of a line.

$$\vec{\mathbf{r}}(t) = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}} = \langle x_0, y_0, z_0 \rangle + t \langle v_1, v_2, v_3 \rangle = \langle x_0 + tv_1, y_0 + tv_2, z_0 + tv_3 \rangle.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

There are many equivalent ways to write the equation of a line.

$$\vec{\mathbf{r}}(t) = \vec{\mathbf{r}}_0 + t\vec{\mathbf{v}} = \langle x_0, y_0, z_0 \rangle + t \langle v_1, v_2, v_3 \rangle = \langle x_0 + tv_1, y_0 + tv_2, z_0 + tv_3 \rangle.$$

Taking the last option, we can express a line as three parametric equations, where each variable is a function of t:

$$x(t) = x_0 + tv_1$$
, $y(t) = y_0 + tv_2$, $z(t) = z_0 + tv_3$.

Example

Find the equation of the line L passing through the points $P_1 = (-3, 2, -3)$ and $P_2 = (1, -1, 4)$.

Example

Find the equation of the line L passing through the points $P_1 = (-3, 2, -3)$ and $P_2 = (1, -1, 4)$.

$$ec{\mathbf{v}}=\langle 4,-3,7
angle$$

 $ec{\mathbf{r}}(t)=\langle 1,-1,4
angle+t\langle 4,-3,7
angle$

Example

Find the equation of the line L passing through the points $P_1 = (-3, 2, -3)$ and $P_2 = (1, -1, 4)$.

$$ec{\mathbf{v}} = \langle 4, -3, 7
angle$$

 $ec{\mathbf{r}}(t) = \langle 1, -1, 4
angle + t \langle 4, -3, 7
angle$

~	~
Ο	r

$$\vec{\mathbf{r}}(s) = \langle -3, 2, -3 \rangle + s \langle 4, -3, 7 \rangle$$

Example

Find the equation of the line L passing through the points $P_1 = (-3, 2, -3)$ and $P_2 = (1, -1, 4)$.

$$egin{aligned} ec{\mathbf{v}} &= \langle 4, -3, 7
angle \ ec{\mathbf{r}}(t) &= \langle 1, -1, 4
angle + t \langle 4, -3, 7
angle \end{aligned}$$

or

$$ec{\mathbf{r}}(s) = \langle -3, 2, -3
angle + s \langle 4, -3, 7
angle$$

If we wanted parametric equations for *L*, they would be x = 1 + 4t, y = -1 - 3t, z = 4 + 7t. The equations x = -3 + 4s, y = 2 - 3s, z = -3 + 7s would also work.