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Last Class

Definition
The cross product of ~u and ~v, denoted ~u×~v, is the vector

~u×~v = (‖~u‖‖~v‖ sin(θ))~n.

~u

~v
~n |~u×~v|

~u×~v

θ



Standard Unit Vector Cross Products

In practice, there’s an easier way to calculate the cross product.
Let’s investigate the cross products of the standard unit vectors.

~i×~j = ~k
~j× ~k =~i
~k×~i =~j

~j×~i = −~k
~k×~j = −~i
~i× ~k = −~j

We also have the property that ~u× (~v + ~w) = ~u×~v + ~u× ~w, i.e.,
that the cross product distributes across vector addition. (This is
not obvious!)
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Cross Product Component Formula
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The components of ~u×~v can be recognized as determinants.
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2x2 Determinants

Given a 2x2 matrix, we can calculate its determinant as follows:∣∣∣∣a b
c d

∣∣∣∣ = ad − bc

Example∣∣∣∣ 4 2
−3 8

∣∣∣∣ = 32 + 6 = 38.
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3x3 Determinants

Given a 3x3 matrix, we can calculate its determinant as follows
(beware of the minus before a2):∣∣∣∣∣∣

a1 a2 a3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = a1

∣∣∣∣u2 u3
v2 v3

∣∣∣∣− a2

∣∣∣∣u1 u3
v1 v3

∣∣∣∣ + a3

∣∣∣∣u1 u2
v1 v2

∣∣∣∣ .

Example∣∣∣∣∣∣
2 2 1
1 −2 4
0 2 −1

∣∣∣∣∣∣ = 2

∣∣∣∣−2 4
2 −1

∣∣∣∣− 2

∣∣∣∣1 4
0 −1

∣∣∣∣ + 1

∣∣∣∣1 −2
0 2

∣∣∣∣
= −12 + 2 + 2 = −8.
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Back to the cross product

In the language of determinants, we can write

~u×~v =

∣∣∣∣∣∣
~i ~j ~k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣

Example

Let ~u = 〈2, 1, 1〉 and ~v = 〈−4, 3, 1〉. Then we have

~u×~v =

∣∣∣∣∣∣
~i ~j ~k
2 1 1
−4 3 1

∣∣∣∣∣∣ =~i

∣∣∣∣1 1
3 1

∣∣∣∣−~j ∣∣∣∣ 2 1
−4 1

∣∣∣∣ + ~k

∣∣∣∣ 2 1
−4 3

∣∣∣∣
=~i(1− 3)−~j(2 + 4) + ~k(6 + 4) = −2~i− 6~j + 10~k
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Three equivalent formulas

The following formulas are all equally valid ways to find the cross
product of two vectors.

~u×~v = (‖~u‖‖~v‖ sin(θ))~n = (u2v3−u3v2)~i−(u1v3−u3v1)~j+(u1v2−u2v1)~k

=

∣∣∣∣∣∣
~i ~j ~k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ .



Properties of the cross product

The cross product satisfies several useful properties, which are
given in the textbook at page 726.

1. (r~u)× (s~v) = (rs)(~u×~v)

2. ~u× (~v + ~w) = ~u×~v + ~u× ~w
3. ~v× ~u = −(~u×~v)

4. (~v + ~w)× ~u = ~v× ~u + ~w× ~u
5. ~0× ~u = 0

6. ~u× (~v× ~w) = (~u · ~w)~v− (~u ·~v)~w



12.5 Lines (and planes) in space

In the plane (2D), we needed a point and a slope to define a line.
In space (3D), we need a point and a direction vector.

5 10

1

2

3

L

~v = 〈v1, v2, v3〉

P0 = (x0, y0, z0)
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Lines

The point (x , y , z) is on the line L if and only if (x , y , z) is in the
direction of ~v from P0.

5 10

1

2

3

L

~v = 〈v1, v2, v3〉

P0 = (x0, y0, z0)

P = (x , y , z)



Lines

This means we can get from P0 to P via some scalar multiple of ~v.

5 10

1

2

3

L

~v = 〈v1, v2, v3〉

P0 = (x0, y0, z0)

P = (x , y , z)

t~v



Lines

Thus, to write P as a vector (from the origin), we would first go to
P0 and then follow t~v to P.

5 10

1

2

3

L

−→
P0

P0 = (x0, y0, z0)

P = (x , y , z)

t~v

So as vectors,

〈x , y , z〉 = 〈x0, y0, z0〉+ t〈v1, v2, v3〉.



Lines

〈x , y , z〉 = 〈x0, y0, z0〉+ t〈v1, v2, v3〉.

What we’ve done is parametrized the line.

Definition
Let ~r0 = 〈x0, y0, z0〉 and ~v = 〈v1, v2, v3〉 be vectors. Then the
vector equation of a line through P0 = (x0, y0, z0) in the direction
of ~v is

~r(t) =~r0 + t~v, −∞ < t <∞.
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Lines

There are many equivalent ways to write the equation of a line.

~r(t) =~r0+t~v = 〈x0, y0, z0〉+t〈v1, v2, v3〉 = 〈x0+tv1, y0+tv2, z0+tv3〉.

Taking the last option, we can express a line as three parametric
equations, where each variable is a function of t:

x(t) = x0 + tv1, y(t) = y0 + tv2, z(t) = z0 + tv3.
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Example

Example

Find the equation of the line L passing through the points
P1 = (−3, 2,−3) and P2 = (1,−1, 4).

~v = 〈4,−3, 7〉

~r(t) = 〈1,−1, 4〉+ t〈4,−3, 7〉

or
~r(s) = 〈−3, 2,−3〉+ s〈4,−3, 7〉

If we wanted parametric equations for L, they would be
x = 1 + 4t, y = −1− 3t, z = 4 + 7t. The equations
x = −3 + 4s, y = 2− 3s, z = −3 + 7s would also work.
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