Lecture 04
 12.4/12.5 The cross product and lines in space

Jeremiah Southwick

January 23, 2019

Office Hours

MW 2:40-3:40
T 9:30-10:30
R 12:30-1:30
F 8:30-9:30

Last Class

Definition

The cross product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$, denoted $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$, is the vector

$$
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=(\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\| \sin (\theta)) \overrightarrow{\mathbf{n}} .
$$

Standard Unit Vector Cross Products

In practice, there's an easier way to calculate the cross product. Let's investigate the cross products of the standard unit vectors.

Standard Unit Vector Cross Products

In practice, there's an easier way to calculate the cross product. Let's investigate the cross products of the standard unit vectors.

$$
\begin{aligned}
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}}=\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}}=-\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}}=-\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}=-\overrightarrow{\mathbf{j}}
\end{aligned}
$$

Standard Unit Vector Cross Products

In practice, there's an easier way to calculate the cross product.
Let's investigate the cross products of the standard unit vectors.
$\overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{k}}$
$\overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{i}}$
$\overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}}=\overrightarrow{\mathbf{j}}$

$$
\begin{aligned}
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}}=-\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}}=-\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}=-\overrightarrow{\mathbf{j}}
\end{aligned}
$$

We also have the property that $\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$, i.e., that the cross product distributes across vector addition. (This is not obvious!)

Cross Product Component Formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}}=\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}}=-\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}}=-\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}=-\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}
$$

Cross Product Component Formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}}=\overrightarrow{\vec{j}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}}=-\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}}=-\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}=-\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}
$$

Let $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then we have

$$
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left(u_{1} \overrightarrow{\mathbf{i}}+u_{2} \overrightarrow{\mathbf{j}}+u_{3} \overrightarrow{\mathbf{k}}\right) \times\left(v_{1} \overrightarrow{\mathbf{i}}+v_{2} \overrightarrow{\mathbf{j}}+v_{3} \overrightarrow{\mathbf{k}}\right)
$$

Cross Product Component Formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}}=\mathbf{\vec { j }}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}}=-\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}}=-\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}=-\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}
$$

Let $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then we have

$$
\begin{aligned}
\mathbf{u} & \times \overrightarrow{\mathbf{v}}=\left(u_{1} \overrightarrow{\mathbf{i}}+u_{2} \overrightarrow{\mathbf{j}}+u_{3} \overrightarrow{\mathbf{k}}\right) \times\left(v_{1} \overrightarrow{\mathbf{i}}+v_{2} \overrightarrow{\mathbf{j}}+v_{3} \overrightarrow{\mathbf{k}}\right) \\
& =u_{1} v_{1}(\overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{i}})+u_{1} v_{2}(\overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}})+u_{1} v_{3}(\overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}) \\
& +u_{2} v_{1}(\overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}})+u_{2} v_{2}(\overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{j}})+u_{2} v_{3}(\overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}) \\
& +u_{3} v_{1}(\overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}})+u_{3} v_{2}(\overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}})+u_{3} v_{3}(\overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{k}})
\end{aligned}
$$

Cross Product Component Formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}}=\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}}=-\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}}=-\overrightarrow{\vec{i}} \\
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}=-\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}
$$

Let $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then we have

$$
\begin{aligned}
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} & =\left(u_{1} \overrightarrow{\mathbf{i}}+u_{2} \overrightarrow{\mathbf{j}}+u_{3} \overrightarrow{\mathbf{k}}\right) \times\left(v_{1} \overrightarrow{\mathbf{i}}+v_{2} \overrightarrow{\mathbf{j}}+v_{3} \overrightarrow{\mathbf{k}}\right) \\
& =0 \quad+u_{1} v_{2}(\overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}})+u_{1} v_{3}(\overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}) \\
& +u_{2} v_{1}(\overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}})+0 \quad+u_{2} v_{3}(\overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}) \\
& +u_{3} v_{1}(\overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}})+u_{3} v_{2}(\overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}})+0
\end{aligned}
$$

Cross Product Component Formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}}=\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}}=-\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}}=-\overrightarrow{\vec{i}} \\
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}=-\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}
$$

Let $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then we have

$$
\begin{aligned}
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}= & \left(u_{1} \overrightarrow{\mathbf{i}}+u_{2} \overrightarrow{\mathbf{j}}+u_{3} \overrightarrow{\mathbf{k}}\right) \times\left(v_{1} \overrightarrow{\mathbf{i}}+v_{2} \overrightarrow{\mathbf{j}}+v_{3} \overrightarrow{\mathbf{k}}\right) \\
= & 0 \quad+u_{1} v_{2}(\overrightarrow{\mathbf{k}})+u_{1} v_{3}(-\overrightarrow{\mathbf{j}}) \\
& +u_{2} v_{1}(-\overrightarrow{\mathbf{k}})+0+u_{2} v_{3}(\overrightarrow{\mathbf{i}}) \\
& +u_{3} v_{1}(\overrightarrow{\mathbf{j}})+u_{3} v_{2}(-\overrightarrow{\mathbf{i}})+0
\end{aligned}
$$

Cross Product Component Formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}}=\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}}=-\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}}=-\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}=-\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$
Let $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then we have

$$
\begin{gathered}
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left(u_{1} \overrightarrow{\mathbf{i}}+u_{2} \overrightarrow{\mathbf{j}}+u_{3} \overrightarrow{\mathbf{k}}\right) \times\left(v_{1} \overrightarrow{\mathbf{i}}+v_{2} \overrightarrow{\mathbf{j}}+v_{3} \overrightarrow{\mathbf{k}}\right) \\
=\left(u_{2} v_{3}-u_{3} v_{2}\right) \overrightarrow{\mathbf{i}}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \overrightarrow{\mathbf{j}}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \overrightarrow{\mathbf{k}} .
\end{gathered}
$$

Cross Product Component Formula

$$
\begin{aligned}
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{j}}=\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{k}}=\overrightarrow{\mathbf{i}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{i}}=\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathbf{j}} \times \overrightarrow{\mathbf{i}}=-\overrightarrow{\mathbf{k}} \\
& \overrightarrow{\mathbf{k}} \times \overrightarrow{\mathbf{j}}=-\overrightarrow{\vec{i}} \\
& \overrightarrow{\mathbf{i}} \times \overrightarrow{\mathbf{k}}=-\overrightarrow{\mathbf{j}}
\end{aligned}
$$

$\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$
Let $\overrightarrow{\mathbf{u}}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$. Then we have

$$
\begin{gathered}
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left(u_{1} \overrightarrow{\mathbf{i}}+u_{\mathbf{j}} \overrightarrow{\mathbf{j}}+u_{3} \overrightarrow{\mathbf{k}}\right) \times\left(v_{1} \overrightarrow{\mathbf{i}}+v_{2} \overrightarrow{\mathbf{j}}+v_{3} \overrightarrow{\mathbf{k}}\right) \\
=\left(u_{2} v_{3}-u_{3} v_{2}\right) \overrightarrow{\mathbf{i}}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \overrightarrow{\mathbf{j}}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \overrightarrow{\mathbf{k}} .
\end{gathered}
$$

The components of $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ can be recognized as determinants.

2×2 Determinants

Given a 2×2 matrix, we can calculate its determinant as follows:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

2×2 Determinants

Given a 2×2 matrix, we can calculate its determinant as follows:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Example
$\left|\begin{array}{cc}4 & 2 \\ -3 & 8\end{array}\right|=$

2×2 Determinants

Given a 2×2 matrix, we can calculate its determinant as follows:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Example
$\left|\begin{array}{cc}4 & 2 \\ -3 & 8\end{array}\right|=32+6=38$.

3×3 Determinants

Given a 3×3 matrix, we can calculate its determinant as follows (beware of the minus before a_{2}):

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|
$$

3×3 Determinants

Given a 3×3 matrix, we can calculate its determinant as follows (beware of the minus before a_{2}):

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|
$$

Example
$\left|\begin{array}{ccc}2 & 2 & 1 \\ 1 & -2 & 4 \\ 0 & 2 & -1\end{array}\right|=$

3×3 Determinants

Given a 3×3 matrix, we can calculate its determinant as follows (beware of the minus before a_{2}):

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|
$$

Example

$$
\begin{gathered}
\left|\begin{array}{ccc}
2 & 2 & 1 \\
1 & -2 & 4 \\
0 & 2 & -1
\end{array}\right|=2\left|\begin{array}{cc}
-2 & 4 \\
2 & -1
\end{array}\right|-2\left|\begin{array}{cc}
1 & 4 \\
0 & -1
\end{array}\right|+1\left|\begin{array}{cc}
1 & -2 \\
0 & 2
\end{array}\right| \\
=-12+2+2=-8 .
\end{gathered}
$$

Back to the cross product

In the language of determinants, we can write

$$
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

Back to the cross product

In the language of determinants, we can write

$$
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

Example
Let $\overrightarrow{\mathbf{u}}=\langle 2,1,1\rangle$ and $\overrightarrow{\mathbf{v}}=\langle-4,3,1\rangle$. Then we have

$$
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=
$$

Back to the cross product

In the language of determinants, we can write

$$
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
$$

Example
Let $\overrightarrow{\mathbf{u}}=\langle 2,1,1\rangle$ and $\overrightarrow{\mathbf{v}}=\langle-4,3,1\rangle$. Then we have

$$
\begin{aligned}
& \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
2 & 1 & 1 \\
-4 & 3 & 1
\end{array}\right|=\overrightarrow{\mathbf{i}}\left|\begin{array}{cc}
1 & 1 \\
3 & 1
\end{array}\right|-\overrightarrow{\mathbf{j}}\left|\begin{array}{cc}
2 & 1 \\
-4 & 1
\end{array}\right|+\overrightarrow{\mathbf{k}}\left|\begin{array}{cc}
2 & 1 \\
-4 & 3
\end{array}\right| \\
& \quad=\overrightarrow{\mathbf{i}}(1-3)-\overrightarrow{\mathbf{j}}(2+4)+\overrightarrow{\mathbf{k}}(6+4)=-2 \overrightarrow{\mathbf{i}}-6 \overrightarrow{\mathbf{j}}+10 \overrightarrow{\mathbf{k}}
\end{aligned}
$$

Three equivalent formulas

The following formulas are all equally valid ways to find the cross product of two vectors.

$$
\begin{aligned}
\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}=(\|\overrightarrow{\mathbf{u}}\|\|\overrightarrow{\mathbf{v}}\| \sin (\theta)) \overrightarrow{\mathbf{n}} & =\left(u_{2} v_{3}-u_{3} v_{2}\right) \overrightarrow{\mathbf{i}}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \overrightarrow{\mathbf{j}}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \overrightarrow{\mathbf{k}} \\
& =\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| .
\end{aligned}
$$

Properties of the cross product

The cross product satisfies several useful properties, which are given in the textbook at page 726 .

1. $(r \overrightarrow{\mathbf{u}}) \times(s \overrightarrow{\mathbf{v}})=(r s)(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}})$
2. $\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$
3. $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}=-(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}})$
4. $(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}) \times \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}}$
5. $\overrightarrow{\mathbf{0}} \times \overrightarrow{\mathbf{u}}=0$
6. $\overrightarrow{\mathbf{u}} \times(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})=(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}) \overrightarrow{\mathbf{v}}-(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{w}}$

12.5 Lines (and planes) in space

12.5 Lines (and planes) in space

In the plane (2D), we needed a point and a slope to define a line. In space (3D), we need a point and a direction vector.

12.5 Lines (and planes) in space

In the plane (2D), we needed a point and a slope to define a line. In space (3D), we need a point and a direction vector.

Lines

The point (x, y, z) is on the line L if and only if (x, y, z) is in the direction of $\overrightarrow{\boldsymbol{v}}$ from P_{0}.

Lines

This means we can get from P_{0} to P via some scalar multiple of $\overrightarrow{\mathbf{v}}$.

Lines

Thus, to write P as a vector (from the origin), we would first go to P_{0} and then follow $t \overrightarrow{\mathbf{v}}$ to P.

So as vectors,

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle v_{1}, v_{2}, v_{3}\right\rangle
$$

Lines

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle v_{1}, v_{2}, v_{3}\right\rangle
$$

Lines

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle v_{1}, v_{2}, v_{3}\right\rangle
$$

What we've done is parametrized the line.

Lines

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle v_{1}, v_{2}, v_{3}\right\rangle
$$

What we've done is parametrized the line.
Definition
Let $\overrightarrow{\mathbf{r}}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ be vectors. Then the vector equation of a line through $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of \vec{v} is

$$
\overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}_{0}+t \overrightarrow{\mathbf{v}}, \quad-\infty<t<\infty
$$

Lines

There are many equivalent ways to write the equation of a line.

$$
\overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}_{0}+t \overrightarrow{\mathbf{v}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle x_{0}+t v_{1}, y_{0}+t v_{2}, z_{0}+t v_{3}\right\rangle .
$$

Lines

There are many equivalent ways to write the equation of a line.

$$
\overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}_{0}+t \overrightarrow{\mathbf{v}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle x_{0}+t v_{1}, y_{0}+t v_{2}, z_{0}+t v_{3}\right\rangle .
$$

Taking the last option, we can express a line as three parametric equations, where each variable is a function of t :

$$
x(t)=x_{0}+t v_{1}, \quad y(t)=y_{0}+t v_{2}, \quad z(t)=z_{0}+t v_{3} .
$$

Example

Example

Find the equation of the line L passing through the points $P_{1}=(-3,2,-3)$ and $P_{2}=(1,-1,4)$.

Example

Example

Find the equation of the line L passing through the points
$P_{1}=(-3,2,-3)$ and $P_{2}=(1,-1,4)$.

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}=\langle 4,-3,7\rangle \\
\overrightarrow{\mathbf{r}}(t)=\langle 1,-1,4\rangle+t\langle 4,-3,7\rangle
\end{gathered}
$$

Example

Example

Find the equation of the line L passing through the points
$P_{1}=(-3,2,-3)$ and $P_{2}=(1,-1,4)$.

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}=\langle 4,-3,7\rangle \\
\overrightarrow{\mathbf{r}}(t)=\langle 1,-1,4\rangle+t\langle 4,-3,7\rangle
\end{gathered}
$$

or

$$
\overrightarrow{\mathbf{r}}(s)=\langle-3,2,-3\rangle+s\langle 4,-3,7\rangle
$$

Example

Example

Find the equation of the line L passing through the points
$P_{1}=(-3,2,-3)$ and $P_{2}=(1,-1,4)$.

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}=\langle 4,-3,7\rangle \\
\overrightarrow{\mathbf{r}}(t)=\langle 1,-1,4\rangle+t\langle 4,-3,7\rangle
\end{gathered}
$$

or

$$
\overrightarrow{\mathbf{r}}(s)=\langle-3,2,-3\rangle+s\langle 4,-3,7\rangle
$$

If we wanted parametric equations for L, they would be $x=1+4 t, y=-1-3 t, z=4+7 t$. The equations
$x=-3+4 s, y=2-3 s, z=-3+7 s$ would also work.

